Evolutionary Multi-Objective Optimisation with a Hybrid Representation

نویسندگان

  • Tatsuya Okabe
  • Yaochu Jin
  • Bernhard Sendhoff
چکیده

For tackling multi-objective optimisation (MOO) problem, many methods are available in the field of evolutionary computation (EC). To use the proposed method(s), the choice of the representation should be considered first. In EC, often binary representation and real-valued representation are used. In this paper, we propose a hybrid representation, composed of binary and real-valued representations for multi-objective optimisation problems. Several issues such as discretisation error in the binary representation, self-adaptation of strategy parameters and adaptive switching of representations are addressed. Experiments are conducted on five test functions using six different performance indices, which shows that the hybrid representation exhibits better and more stable performance than the single binary or real-valued representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

On the Disruption-level of Polynomial Mutation for Evolutionary Multi-objective Optimisation Algorithms

This paper looks at two variants of polynomial mutation used in various evolutionary optimisation algorithms for mutliobjective problems. The first is a non-highly disruptive and the second is a highly disruptive mutation. Both are used for problems with box constraints. A new hybrid polynomial mutation that combines the benefits of both is proposed and implemented. The experiments with three e...

متن کامل

A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm

This paper  presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...

متن کامل

Hybridisation of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimisation Problems

The paper presents a taxonomic analysis of existing hybrid multi-objective evolutionary algorithms aimed at solving multi-objective simulation optimisation problems. For that, the properties of evolutionary algorithms and the requirements made to solving the problem considered are determined. Finally, a combination of the properties, which allows one to increase the approximation accuracy of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003